Transferring Deep Belief Networks for the Classification of LANDSAT8 Remote Sensing Imagery
نویسندگان
چکیده
منابع مشابه
ISBDD Model for Classification of Hyperspectral Remote Sensing Imagery
The diverse density (DD) algorithm was proposed to handle the problem of low classification accuracy when training samples contain interference such as mixed pixels. The DD algorithm can learn a feature vector from training bags, which comprise instances (pixels). However, the feature vector learned by the DD algorithm cannot always effectively represent one type of ground cover. To handle this...
متن کاملContext guided belief propagation for remote sensing image classification.
We propose a context guided belief propagation (BP) algorithm to perform high spatial resolution multispectral imagery (HSRMI) classification efficiently utilizing superpixel representation. One important characteristic of HSRMI is that different land cover objects possess a similar spectral property. This property is exploited to speed up the standard BP (SBP) in the classification process. Sp...
متن کاملDeep Neural Networks for Semantic Segmentation of Multispectral Remote Sensing Imagery
A semantic segmentation algorithm must assign a label to every pixel in an image. Recently, semantic segmentation of RGB imagery has advanced significantly due to deep learning. Because creating datasets for semantic segmentation is laborious, these datasets tend to be significantly smaller than object recognition datasets. This makes it difficult to directly train a deep neural network for sem...
متن کاملIndependent-component analysis for hyperspectral remote sensing imagery classification
Harold Szu, FELLOW SPIE Office of Naval Research Arlington, Virginia 22217 Abstract. We investigate the application of independent-component analysis ICA to remotely sensed hyperspectral image classification. We focus on the performance of two well-known and frequently used ICA algorithms: joint approximate diagonalization of eigenmatrices JADE and FastICA; but the proposed method is applicable...
متن کاملA new bio-inspired method for remote sensing imagery classification
The problem of supervised classification of the satellite image is considered to be the task of grouping pixels into a number of homogeneous regions in space intensity. This paper proposes a novel approach that combines a radial basic function clustering network with a growing neural gas include utility factor classifier to yield improved solutions, obtained with previous networks. The double o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2020
ISSN: 1742-6588,1742-6596
DOI: 10.1088/1742-6596/1544/1/012106